§3. Topological Stabilizer Codes <u>33.1 Z2 Chain Complex</u> Consider a surface G = (V, E, F) that consists of the vertices V= { v_r}, edges $E = \{e_e\}$, and faces $F = \{f_m\}$. (G is embedded on a 2d manifold, the "surface", on which the faces are defined) Define a vector space Co over Z, using each vertex KEV as a basis B(Co) = {2k}, write for CECo $\zeta_{o} = \sum_{\kappa}^{\prime} Z_{\kappa} \mathcal{V}_{\kappa}$ where $z_{\kappa} \in \{o_1\}$ - Co is abelian group under component wise addition (mod 2)

Similarly, define abelian groups
C, and C, using edges {e}] and
faces
$$\{fm\}$$
, i.e $B(C_i) = \{e_i\}$, $B(G_i) = \{f_m\}$
 $\Rightarrow c_i = \sum_{e} z_e e_e$ i-chain
 $c_2 = \sum_{m} z_m f_m$ 2-chain
 $z_e, z_m \in \{c_i\}$
Next, define a homomorphism
 $\partial_i : C_i \Rightarrow C_{i-1}$
such that
 $\partial_i \circ \partial_{i-1} = 0$
Specifically, $\partial_i c_i$ is (i-1)-chain which
is the boundary of c_i .
example:
 $\frac{1}{k_k} = \frac{1}{e_k} \frac$

The homology group H; is defined
by
$$H_i = ker(\partial_i)/Img(\partial_{i+i})$$

he H_i is called homology class
if $C_i \sim C_i' \sim h \implies C_i = C_i' + \partial_{C_{i+1}}$
We also define the dual surface
 $\overline{G} = (\overline{V}, \overline{E}, \overline{F})$ with $\overline{V} = \overline{F}, \overline{E} = \overline{E}, \overline{F} = V$
 G
Define Z_2 chain complex on \overline{G} using
dual bases $\overline{B}(C_i)$, a dual i-chain
 $\overline{C}_i \in \overline{C}_i$ and a boundary operator
 $\underline{Surface \ code}$:
or qubit is defined on each edge
 $e_i \in \overline{E}$ of surface \overline{G}

• the Pauli product is defined as

$$W(c_{1}) = \prod_{e} W_{e}^{3e} \quad \text{for I-chain } c_{1}$$
where $W_{e} \in \{X_{e}, Y_{e}, Z_{e}\}$
We have $W(c_{1}) W(c_{1}') = W(c_{1} + c_{1}')$
Consider two operators $X(c_{1})$ and $Z(c_{1}')$
then define $c_{1} \cdot c_{1}' = \sum_{e} Z_{e}Z_{e}' \mod 2$
 $\rightarrow C_{1} \cdot C_{1}' = 0, \quad \text{iff } X(c_{1}) Z(c_{1}') = Z(c_{1}')X(c_{1})$
 $C_{1} \cdot C_{1}' = 1, \quad \text{iff } X(c_{1}) Z(c_{1}') = Z(c_{1}')X(c_{1})$
 $Z_{e}t \quad M(\partial_{1}) \quad be \quad a \quad matrix \quad rep. \quad af \; \partial_{1};$
with respect to the basis vector $B(C(c_{1}))$
and $B(C_{i-1}) \rightarrow (M(\partial_{i})G_{1}) \cdot C_{i-1} = C_{1} \cdot (M(\partial_{1})T_{i-1})$
Moreover, $M(\partial_{1}| = M(\overline{\partial}_{2})T, \quad M(\partial_{2}) = M(\overline{\partial}_{1})T$
 $\overline{\partial}_{1} \cdot \overline{\partial}_{2} = 0 \rightarrow M(\overline{\partial}_{2})T M(\overline{\partial}_{2}) = 0$
and so $\overline{\partial} \overline{c}_{1} \cdot \overline{\partial} C_{1} = 0, \quad i.e.$
 $X(\partial C_{1}) \quad and \quad Z(\overline{\partial} \overline{c}_{1}) \quad commute$

§3.2 A Bit-Flip Code: Exercise
Consider a regular polygon
$$G(V, F, F)$$

on a sphere consisting of $n = IEI$ edges
and two faces $F = \{f_i, f_2\}$
 $\rightarrow \#$ qubits = n
 $V_{F_i} = f_i$
 V_{K', F_k}
We define a stabilizer generator for each
dual face $f_k = V_k$ as follows:
 $A_k = Z(\partial f_k) = \prod_{\substack{k \in SV_k \\ k \in SV_k \\ k \in V_k \in V_k \\ k \in V_k = I}, \text{ there are } n-1 \text{ indep.}$
stabilizer generators.

Define logical X operator

$$L_X = X(\Im f_i) - X(c_i)$$

Note that $L_X = X(\Im f_i)$ and $A_K = 2(\Im f_K)$
commute, $L_2 = Z_e$
 $X(\Im f_i)$
 $X = X = U_K \times X$
 $Z = Z$
 $Z(SU_K)$
A string of bit errors $X(c_i)$ is defined
using a 1-chain c_i , the "error chain":
 $U = U = U = U$
 $U = U$

The code state 14> satisfies
Am 14> = 14>, Bx 14> = 14> V freF, 4xeV
For homologically equivalent t-chains
c, and c' we have

$$Z(c') = Z(c) Z(\partial c_2) = Z(c) (TT Ar)$$

 \rightarrow actions on code space
are same !
we write $Z(c') \sim Z(c)$